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Sankhy? : The Indian Journal of Statistics 
1983, Volume 45, Series B, Pt. 2, pp. 193-224. 

INCOMPLETE BLOCK DESIGNS FOR COMPARING 
TREATMENTS WITH A CONTROL (II): 

OPTIMAL DESIGNS FOR ONE-SIDED 

COMPARISONS WHEN p = 
2(1)6, 

k = 2 AND p = 
3, k = 3 

% ROBERT E. BECHHOFER 

Cornell University, Ithaca, New York 14853 

and 

AJIT C. TAMHANE 

Northwestern University, Evanston, IVKnois 60201 

SUMMARY. In this article we continue the study of balanced treatment incomplete 
block (BTIB) designs initiated in Bechhofer and Tamhane (1981). These designs are appropriate 
for comparing simultaneously p > 2 test treatments with a control treatment in blocks of com 

mon size k < p+l. The general class of BTIB designs was characterized in that first article. 

In the present article we study in detail the particular cases p > 2, k = 2 and p 
= 3. k = 3. 

These cases share a special property, namely that there are only two so-called generator designs 
in the minimal complete set. This fact enables us to give for these cases a simple characteriza 

tion of admissible designs which are the only contenders for optimal designs. 

We have computed tables of discrete optimal designs for joint one-sided comparisons for 

the cases p 
= 

2(1)6, k = 2 and p = 3, k = 3. The special property possessed by these cases 

also enables us to develop a simple continuous approximation to the discrete optimal designs. 

Using this approximation we have computed analogous tables of continuous optimal designs ; 

these tables can be used when large 6-values are required. The theory underlying the approxi 
mation is developed, and its goodness is assessed. 

1. Introduction 

In Bechhofer and Tamhane (1981) (referred to hereinafter as B-T) we 

initiated the study of balanced treatment incomplete block (BTIB) designs 
which are appropriate for comparing simultaneously p > 2 test treatments 

with a control treatment in blocks of common size k <p+1. This general 
class of designs was characterized in B-T. In the present article we obtain 

optimal designs within this class for p = 
2(1)6, k = 2 and p 

= 3, k ? 3. 

The cases p > 2, k = 2 and p 
= 3, k = 3 share a special property, namely 

that there are exactly two so-called generator designs in the minimal complete 
set for each of the (p, &)-values. (See Section 2.2 for definitions of the various 

technical terms used in this section.) This feet enables us to give a simple 
characterization of admissible designs for these cases. 
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When the minimal complete set consists of only two generator designs, 
it is possible to develop a simple continuous approximation to the discrete 

optimal designs. The problem of obtaining the continuous optimal designs 
is easy to solve on a computer. Also, use of the approximation substantially 
reduces the number of designs to be tabulated. In the present article we 

give discrete as well as continuous optimal designs for one-sided comparisons 
with a control. More detailed tables of discrete optimal designs for the 

(p, &)-values considered in the present article as well as for many additional 

ones of practical interest are given in Bechhofer and Tamhane (1983) both for 

one-sided and for two-sided comparisons. 

In order to make the present article self-contained we state below the 

key definitions and results from B-T. We shall use the following notation 

(also used in B-T) : Let the treatments be indexed by 0, 1, ...,p with 0 

denoting the control treatment and \,2, ...,p denoting the test treatments. 

The N = Jcb experimental units can be arranged in b blocks each of common 

size Jc. If treatment i is assigned to the A-th plot of the j-th block 

(0 < i < p, 1 < h < Je, 1 < j < b), let Yijk denote the corresponding random 

variable; we assume the usual additive linear model (no treatment X block 

interaction) 
Y m =P+*i+?j+etjh ... (1.1) 

p b 

with ? at = T? ?j ?0; the e^? are assumed to be i.i.d. iV(0, <r2) random 

variables, and cr2 is assumed to be known. It is desired to make joint interval 

estimates (employing one-sided or two-sided intervals) of the p differences 

a0?ol% based on their best linear unbiased estimators (BLUE's) ?r0?a. 

(1 < i < p). 

In Section 3.1 of B-T we proposed a class of incomplete block designs 
which are balanced with respect to the test treatments in the following sense : 

var{?0?&i} =rV2 (1 < i < p) and 
corr{?0?&h, ?0??.J =/> (ix ̂  i2; 1 < iv 

i2 < _p); the parameters r and p depend on the design employed. We refer 

to designs with this property as BTIB designs. (We have recently learned 

that Pearce (1960) had proposed designs with this same property; he called 

them designs with "supplemented balance.") Conditions that a design must 

satisfy in order that it be BTIB were given in Theorem 3.1 of B-T. This 

theorem states that if {r?j} is the incidence matrix of the design, r^ being the 

total number of times the i-th treatment appears in the j-th block, and if 
b 

?. . = 2 r. /. , which is the total number of times that the i^th treatment 
*1*2 ^ 

lU Hi 
1 

appears with the ?2-th treatment in the same block over the whole design 
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(h =?hl 0 < iv i2 < p), then the necessary and sufficient conditions for a 

design to be BTIB are that 

^01 =^02 
= 

=^op 
= 

^o (say) 

Aia 
= 

Au 
= ... = 

?p?lf p = 
Ax (say) 

for some A0, Ax > 0. In Section 4 of B-T we restricted consideration to BTIB 

designs, and showed how to use such designs for experiments leading to joint 
one-sided (or two-sided) confidence interval estimates of the a0?a? (1 < i < p) 

when a2 is known (or unknown). 

The specific multiple comparisons with a control (MCC) problem with 

which we are concerned in the present article is that of obtaining joint one 

sided confidence intervals of the form 

K-a, > Ao-?t-a (1 < % < p)} 
... (1.2) 

for given values of (p, k) when or2 is known, and a > 0 is a specified "allowance" 

associated with the common "width" of the confidence intervals. For this 

problem we seek an optimal design in the class of all admissible BTIB designs, 
an optimal design being one which minimizes b, the total number of blocks 

required to achieve a specified confidence coefficient 1?a associated with (1.2). 

2. Preliminaries 

2.1. Expressions for joint confidence interval estimates. For ease of 

reference we record here the expressions derived in B-T for the estimators 

?o?&i (1 ^ * ̂  P)> an(i their variances and correlations. Let T4 denote 

the sum of all observations obtained with the i-th treatment (0 ̂  i < p), 

and let Bj denote the sum of all observations in the j-th block (1 < j < 6). 

Define B\ 
= 2 r^Bj and let Qx = kTt-B* (0 < i < p). Then 

Also, 

where 
varfo-?,} =tV2 (1 <?<!>) ... (2.2) 

. _ ?(Ao+AJ 
M*o+p*i) 

' (2.3) 

and 

p = 
oarrf?,??^, ?^-?^} 

= 
j^rj- (h ?> H\ 1 < *i> ?a < P)- (2-4) 
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The probability associated with (1.2) is given by 

P{a0-oci > ?0?fa?a (1 < i < p)} 

'Wp+?Iv 
? CO L VT 

d<S>(x); 
... (2.5) 

here <_>( ) denotes the standard normal c.d.f. and for notational simplicity we 

have let 

f=^=?}> 
... (2.6) 

\{K+pK) 
and _ 

?=aVJcbl<r, 
... (2.7) 

both of which are pure numbers. 

2.2. Generator designs, admissible designs, and minimal complete set of 

generator designs. We begin with the concept of a generator design. For 

given (p, k) a generator design is a BTIB design such that no proper subset 

of its blocks forms a BTIB design and none of its blocks contains only one 

of the p-\-l treatments. 

Next we define an admissible design. If for given (p, h) we have two 

BTIB designs D and D', with parameters (b, A?, ?^ r, p) and (&', ?0, ?[, r', p'), 

respectively, with b < b', and if for every a and er, D yields a confidence co 

efficient no smaller than (resp., larger than) that yielded by D' when b <b' 

(resp., b = 
b') then we say that D' is inadmissible with respect to (w.r.t.) D. 

In Theorem 5.1 of B-T the following condition was shown to be necessary and 

sufficient for D' to be inadmissible w.r.t. D : b ^ b', r ^ r', and p > p' with 

at least one inequality strict. If a design is not inadmissible then it is said 

to be admissible. If b = b', r = r', p =pf then we say that D and D' are 

equivalent since they yield the same confidence coefficient (2.5) for all values 

of a and or. A minimal complete set of generator designs is the smallest set 

of generator designs D = 
{_D1? D2, ..., Dn} from which all admissible designs 

can be constructed for given (p, 1c) (except possibly any equivalent designs). 

A method for obtaining the minimal complete set for any given (p, Jc) is des 

cribed in Section 5 of B-T. 

2.3. Optimal designs. For given (p, k), let D ? 
{Dv D2, ..., Dn} denote 

the minimal complete set of generator designs. Let A^>, \[l) be the design 

parameters associated with Dh and let b\ be the number of blocks required 

by Di (1 < i < n). Then a BTIB design D obtained by forming unions of 
n 

fi > 0 replications of D?, (represented as D = 
JJ /?A) has the design para 
i = l 
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meters A0 = S fiXf and Ax = S fiXf and requires b = S ffa blocks. 

We shall consider only implementahle D, i.e., those for which A0 > 0. It 

should be noted that for given D the design D is completely determined by 
its frequency vector f ={fv ...,/J. 

As mentioned at the end of Section 1, an optimal design minimizes b in 

the class of all admissible designs which for (1.2) achieve at least a specified 
confidence coefficient 1?a. The problem of finding an optimal design is 

solved numerically in two steps which are described below. 

In the first step b is fixed and for given (p, k), D, and specified a/or, / is 
n 

chosen to maximize (2.5) among all admissible / satisfying 2 /?6? =6, 
n 

2 /?^(o > ? and fi > 0 (1 < i < n). In this setup the integral expression 
<=i 

(2.5) for the confidence coefficient can be regarded as a function of / for given 

(p, k), D, b and for specified ? 
= 

aVkblcr. We therefore denote (2.5) by 

g(f\D; p,k,b;?) =g (say). Let g denote the maximum value of g for that 
A. 

b and let / denote the BTIB design that yields g. This procedure of finding 

/ and its associated g is repeated for all values of b for which admissible 

designs exist. Thus this first step generates a table of / and g for different 

b and the specified a\cr. 
In the second step, the specified 1?a and a/cr are fixed and 6 is varied. 

Then by referring to the table of (/, g), the / with the smallest b (say, b) for 

which g > 1?a is determined. This procedure of finding an optimal design 
is illustrated in Section 4 for the special case p 

= 2, k = 2. 

3. Minimal complete sets of generator designs and admissible 

DESIGNS FOR p > 2, k = 2, AND p 
= 3, k = 3 

3.1. Minimal complete sets of generator designs for p ^ 2, k =2 and 

p 
= 3, k = 3. For p > 2, i = 2 and # 

= 
3, & = 3 the minimal complete sets 

of generator designs always have cardinality two. For p > 2, k = 2 this is 

clear since the only two generator designs possible are 

rOO 0-^ f11 i>?x 1 
?>0=<{ 

... 
?>, D, = 

^ 
... 

J.. ... (3.1) 
{l 2 pj 12 3 p J 

For Z>0 of (3.1) we have 

&o=2>, A<o0)=l, A<?>=0, ... (3.2) 
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Z>,= 

and for Dx of (3.1) we have 

^ _-**=!->, A<?=0, A<1>=1. 
... (3.3) 

Thus for any BTIB design D =/0D0 (J AA for p > 2, fc = 2 we have 

6=_>{/o+^i^-7i}. 
\=U A. ?A. ... (3.4) 

For j) 
= 3, k = 3 it is shown in Notz and Tamhane (1983) that 

0 0 
0-| ? 

1 
^ 

1 1 2 L Dt =<> 2 y 
... (8.5) 

L2 3 3j L 3 J 

constitutes the minimal complete set. (The problem of constructing the 

minimal complete sets of generator designs for p > 3, k = 3 is nontrivial; 

this problem is addressed in the Notz-Tamhane article where the minimal 

complete sets are given for p 
= 

3(1)10, k = 
3.) For D0 of (3.5) we have 

60=3, A<8>=2, A<?>:=1, ... (3.6) 

and for D1 of (3.5) we have 

61=1, A<J)=0, ?<?>=1. 
... (3.7) 

Thus for any BTIB design /0_D0 (J/A for p 
= 3, /i = 3 we have 

6=3/0+^, A0=2/0, A1=/0+/1. 
... (3.8) 

In the sequel we will only consider the BTIB designs obtained for given (_p, k) 

from the generator designs in the minimal complete set for that (p, k). 

3.2. Characterization of admissible designs for _p > 2, k = 2 and p 
= 3, 

k = 3. To characterize the admissible designs we first introduce the concept 

of a b-admissible design : For given (p, k), a BTIB design D requiring b 

blocks is said to be b-inadmissible if it is inadmissible w.r.t. another BTIB 

design also requiring b blocks. If a design is not 6-inadmissible then it is 

said to be 6-admissible. (See Table 4.1 A for examples of 6-inadmissible 

designs.) A 6-admissible design sometimes can be inadmissible w.r.t. a design 

with a smaller 6, but a 6-inadmissible design is always inadmissible. 

The importance of the 6-admissibility concept lies in the fact that for 

p ^ 2, k = 2 almost all 6-admissible designs are admissible with only a very 

small number of exceptions while for p 
= 3, k = 3 all 6-admissible designs 
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are admissible. This fact suggests that it usually is sufficient to restrict 

consideration to 6-admissible designs for the purpose of obtaining optimal 

designs. 

We now recall the necessary and sufficient condition, given in Section 2.2, 

for a design to be inadmissible w.r.t. another design. For 6-inadmissibility 

that condition can be stated simply as follows : For given (p, k) let D and 

Df be two BTIB designs with b = 6', and parameters (r?, p) and (?/', p'), res 

pectively. The design D' is b-inadmissible w.r.t. the design D iff r? < rf 

and p?*pf with at least one inequality strict. If a- design is not 6-inadmissible 

then it is b-admissible. 

We note that this simpler condition compares designs in terms of their 

^-values rather than their T-values. This is permissible because from (2.6) 
we see that r\\r\' 

? 
t?t' when 6=6'. 

Using this condition, 6-admissible designs are characterized in the follow 

ing theorem. 

Theorem 3.1 : Let (p, k) and the associated minimal complete set of genera 

tor designs {D0, Dt} be given where D0 contains both the control and the test 

treatments while Dx contains only the test treatments. Let (6?, A^, A^) be the 

parameters associated with D? (i 
= 0, 1) where A^> 

= 0. For fixed 6 consider all 

designs D =/o^o U/i^i w^1 /0&0+/A == & Letffi denote the upper bound on 

/0. Then one of the following two cases obtain depending on the value of 

Case 1 : If ? > 0 then there exists an integer fl > 2 which is the smallest 

value of/0 satisfying ?/2(/0) > V2(fo?d); here d is the smallest positive integer 
such that bx divides (60d). If /* < f]f then all designs D with /0 > /J are 

b-admissible. 

Case 2 : If ? ^ 0 then all designs D are 6-admissible. 

Corollary : For p > 2, k = 2, Case 1 holds while for p 
= 3, fe = 3, Case 2 

holds. 

The proof of the theorem is given in Appendix 1. If Case 1 holds, then 

6 must be sufficiently large in order that /? < /??. As 6 increases the number 
of designs eliminated as being 6-inadmissible increases. 

The corollary follows directly for p > 2, k = 2 by substituting (3.2) 
and (3.3) in (3.9) and verifying that ? =p{p?l)?2 > 0 and for p = 3, k = 3 

by substituting (3.6) and (3.7) in (3.9) and verifying that ? = ? 3 < 0. 

B2-7 
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The proof of Theorem 3.1 uses a technique (discussed in detail in Section 5) 

which regards y ==60/0/6 as a continuous variable taking values in (0, 1]. 
If y* denotes the minimizing value of if (regarded as a function of y) then 

for Case 1, y* is given by solving the equation drf\dy 
= 0 (see (A. 4) in Appen 

dix 1 for an expression for d?/2/dy); for Case 2, y* 
= 1. The quantity y* is 

the maximum permissible proportion of blocks that can be allocated to D0 
in a design D with the latter being 6-admissible (assuming that a BTIB design 
exists for every y e (0, 1]). Therefore a characterization of 6-inadmissibility 
in the continuous case can be given as follows : For given (p, k), {D0, D?} 
and 6, a design f0D0 {Jf1D1 is 6-inadmissible iff 

/o>-T"- 

' 
- (3-10) 

?0 

This characterization of 6-inadmissibility in the continuous case can be 

expected to approximate closely the exact characterization in the discrete 

case (cf. Theorem 3.1) for sufficiently large 6. However, for small or moderate 

6 the former characterization may classify a design as 6-inadmissible when, 

in fact, it is not. This can happen because of one of two reasons : (i) For 

given 6 there may exist only one BTIB design in which case it is automatically 

6-admissible although it may satisfy (3.10). (ii) The critical number fl 

(defined in Theorem 3.1) which provides an exact characterization of 6-admis 

sibility for the discrete case is always greater than 6y*/60. Therefore, a design 

/o^oU/A w^tli by*?b0 </0 </o Is 6-admissible although it satisfies (3.10). 

For p > 2, k = 2, the value of y* is given by 

--1?1 JjZL?l] for_?> 2,p^3, k =2 

y=\ (p-QlVp+l - P P 
... (3.11) 

L 3/4 for p = 3, k = 2. 

The corresponding exact values o?fl are given by (4.2). 

We now state 

Theorem 3.2: For given (p,k) and {D0, DJ let D = 
foD0{jf1D1 and 

D' =/??0[J/i?i be two BTIB designs where {D0, D-} is given by (3.1) for 
_p > 2, k = 2 and by (3.5) for p = 3, k = 3, respectively. Let (6, r, p) and 

(&', t', p') with 6 < V denote the parameters associated with D and U, respectively. 

(i) For _p > 2, k =2, if f0 < 6y*/60 and f? < b'y*lb'0 where y* is given 

by (3.11), then D' cannot be inadmissible w.r.t. D. 

(ii) For p =3, k =3, D' cannot be inadmissible w.r.t. D. 
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Proof: See Appendix 1. 

For p =3, k =3, the corollary of Theorem 3.1 states that all BTIB 

designs are 6-admissible; this together with part (ii) of Theorem 3.2 implies 
that all BTIB designs for p 

= 3, k = 3 are admissible. Also note that 

part (i) of Theorem 3.2 does not assert that if a design is 6-admissible then it 

is admissible; this statement, unfortunately, is not always true. By an 

exhaustive enumerative computer search for the cases p 
= 

2(1)6, k = 2 with 

6 < 200 a total of only four 6-admissible designs that are inadmissible were 

found. These designs are listed below along with the corresponding dominat 

ing design with smaller 6 : 

(i) p 
= 4, k = 2 : The design 4D0 which is 6-admissible for 6 =16 

and has (r2 
= 0-5000, p 

= 
0-0000) is inadmissible w.r.t. the design 2D0 \J Dt 

with 6 = 14 and (r2 
= 0-5000, p 

= 
0-3333). 

(ii) p 
= 6, k = 2 : (a) The design 5D0 which is 6-admissible for 6 = 30 

and has (r2 
= 0-4000, p 

= 
0-0000) is inadmissible w.r.t. the design 2D0 (J Dx 

with 6 =27 and (r2 =0-3750, p =0-3333). 

(b) The design 9Z>0 (J Dx which is 6-admissible for 6 =69 and has 

(r2 =0-1481, /) =0-1000) is inadmissible w.r.t. the design 6D0 (J 2BX with 

6 =66 and (r2 =0-1481, p =0-2500). 

(c) The design 10D0 (J Z)a which is 6-admissible for 6 =75 and has 

(r2 =0-1375, p =0-0909) is inadmissible w.r.t. the design 7D0 (J 2D1 with 

6 =72 and (r2 =0-1353, p =0-2222). 

It can be expected that for large 6 such exceptions will not arise. There 

fore, for convenience, we restrict consideration to 6-admissible designs, and 

we search for optimal designs among them (recognizing the fact that a very 

small number of 6-admissible designs will yield confidence coefficients lower 

than those yielded by some designs with smaller 6-values, and hence the former 

cannot be optimal). 

4. Discrete optimal designs 

4.1. Results for # > 2, k = 2. For p > 2, k = 2, any BTIB design 

D can be written ^fQD0[JflD1 where {D0, Dx} is given by (3.1) with/0 > 1, 

/x ^ 0. The values of 6, A0 and Ax for D are given by (3.4) which when sub 

stituted in (2.6) and (2.4) yield 

vHn ?b{2b+p(p-3)f0} ( V{f?]-- 
pf0{2b-(p+l)f0} 

' " (4-la) 
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and 

P(fo) 
= 2(6-i>/o) 

(4.1b) 
2b+p(p-3)f0 

' 

The corollary to Theorem 3.1 states that Case 1 holds for all# > 2. In what 

follows, we fix 6 in order to determine the 6-admissible designs. The critical 

number /o referred to in Theorem 3.1 is the smallest /0 satisfying equation 

(3.4) for given 6, and for which y2(f0) > V2(fo~d); here d = 
p?\ if p is even, 

and d = 
(#?1)/2 if ^? is odd. We thus obtain 

/?= J 

. , r 2&+i /&* 11 

intl-ir Vi + i-J 

-m 

^-^V 

for j) 
= 2 

for # 
= 3 

4(j)-l)a# d2 
for# >4 

(4.2a) 

(4.2b) 

(4.2c) 

where int[z] denotes the smallest integer ^ z. 

We now consider in detail the special case p 
= 

2, k = 2 in order to show 

how we obtain optimal designs using the two-step method described at the 

end of Section 2. 

For p 
= 2, & = 2, all designs D=fQD0[Jf1Dl are generated from 

{D0, DJ of (3.1) for arbitrary 6 = 
2/0+./i (6 = 2, 3, ...) where 1 </0 < 6/2, 

TABLE 4.1A. ENUMERATION OF DESIGNS1 FOR p = 2, k 

r0 0* 
2 AND 6 = 2(1)10 

?>n 

c > *-o 

i 2 *3 
1 2 3 

8.00 

8.00 

9.60 
8.00 

11.43 
7.50 

3.33 
8.00 
8.00 

15.27 
8.75 
7.47 

0.000 

0.500 

0.667 
0.000 

0.750 
0.333 

0.800 
0.500 
0.000 

0.833 
0.600 
0.250 

10 
10 
10 
10 
10 

1 
2 
3 

*4 

1 
2 
3 
4 

1 
2 
3 
4 

*5 

17.23 
9.60 
7.62 
8.00 

19.20 
10.50 

8.00 
7.50 

21.18 
11.43 

8.48 
7.50 
8.00 

0.857 
0.667 
0.400 
0.000 

0.875 
0.714 
0.500 
0.200 

0.889 
0.750 
0.571 
0.333 
0.000 

1 The designs marked with an asterisk ( 
* 

) are 6-inadmissible. 
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0 < A < 6?2 for 6 even, and 1 < /0 < (6-l)/2, 1 < ft < 6-2 for 6 odd. 

Equation (4.2a) gives f? while fj[ 
= 6/2 or (6?1)/2 according as 6 is even or 

odd; all 6-inadmissible /0 then satisfy /? </0</o- Thus for 6 < 5, all 

(/o>/i) are 6-admissible; for 6 = 6, (/0,/x) 
= 

(3, 0) is 6-inadmissible; for 

b == 20, (/o,A) =(9, 2) and (10,0) are 6-inadmissible, etc. In Table 4.1 A 

we have enumerated all designs for 6 = 
2(1)10, and have given the associated 

r?2 and />; the 6-inadmissible designs are noted. 

Conceptually, one then proceeds as follows : We are given (p, k), 

{D0, Dj}, and ajcr is specified. We fix 6 and list all 6-admissible designs for 

that 6. Thus from Table 4.1 A we see that for p 
= 

2, k = 2, there are four 

6-admissible designs for 6 = 10. For each 6-admissible design we then 

calculate g as a function of a/o- and find the design which is associated with g, 

the maximum value of g for that 6 and ajtr. Table 4.1B shows for 6 = 10 

the designs maximizing g and their associated ^-values for a?cr 
= 

0-5(0-l)l?0. 

(For ajcr sufficiently small the design (/0,/i) 
= (1, 8) is optimal while for aja 

sufficiently large the design (/0,/i) 
= 

(4, 2) is optimal; this an example of the 

standard phenomenon referred to in the proof of Theorem 5.1 of B-T.) Finally, 
such tables can be prepared for arbitrary 6^2. 

TABLE 4.1B. OPTIMAL DESIGN AND ASSOCIATED CONFIDENCE COEFFICIENT 
AS A FUNCTION OF a/a FOR p = 2, h = 2 WHEN b = 10 

ajcr 0.5 0.6 0.7 0.8 0.9 1.0 

/o 3 3 4 4 4 4 

A 4 4 2 2 2 2 

g 0.6673 0.7248 0.7806 0.8303 0.8719 0.9057 

If g is strictly increasing in 6 for all values of ajcr then such tables provide 

optimal designs with each listed design being optimal for the corresponding 

values of a/or. However, this is not the case for all (p, k); e.g., this is not 

the case for p 
= 4, k = 2. For fixed ajcr, if g decreases or stays constant as 

6 increases then one must delete the designs having the larger 6-values when 

the associated ^-values are no larger than that yielded by a design with a 

smaller 6-value. Using this elimination procedure, detailed tables have been 

prepared for p 
= 

2(1)6, k = 2 and p 
= 

3(1)6, k = 3 for selected values of 

6 and afor; these are given in Bechhofer and Tamhane (1983). In the present 
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paper we have obtained the optimal designs from such tables for selected 

1?a and a\<x. Tables 4.2-4.6 list for p 
= 

2(1)6, respectively, with k = 2 

the optimal designs for 1?a = 0-80, 0-90, 0-95, 0-99 and a/cr 
= 

0-2(0-2)2-0. 

4.2. Results for p -= 3, k = 3. For p 
= 3, i = 3 any BTIB design Z> 

can be written as /0#0U/iA. where {D0, DJ is given by (3.5) with /0 > 1, 

fx > 0. The values of 6, A0, A2 for D are given by (3.8) which when substituted 

in (2.6) and (2.4) yield 

962 
?) = 
m=?> 

- (4-3a) 

and 

(*fo) 
= 

?:??. .- (4.3b) 

The corollary to Theorem 3.1 states that Case 2 holds for p 
= 

3, k = 3. This 

together with Theorem 3.2 shows that all designs D = 
fQDQ \J fxDx are 

admissible for # 
= 

3, & = 3. Table 4.7 lists for # 
= 

3, k = 3 the optimal 

designs for 1?a = 
0-80, 0-90, 0-95, 0-99 and a/cr 

= 
0-2(0-2)2-0. 

TABLE 4.2 DISCRETE OPTIMAL DESIGNS TO ACHIEVE A SPECIFIED CONFIDENCE 

COEFFICIENT (1-a) AS A FUNCTION OF a/a FOR ONE-SIDED 

COMPARISONS (THE UPPER ENTRY IN EACH CELL IS /0, 

AND THE LOWER ENTRY IS fv) 

p 
**-*M? I)' Ml) 

6 = 2/0+/ 

confidence aja 
coefficient 

(1-a) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

258 64 29 16 10 8 5 4 3 3 

0.99 100 26 11 7 5 2 3 2 2 1 

144 36 16 9 6 4 3 2 2 2 

0.95 63 16 7 4 3 2 2 2 1 0 

96 24 11 6 4 3 2 2 2 1 

0.90 .49 13. 5 4 2 1 1.1 0 1 

51 13 6 3 2 2 11 11 

0.80 34 8 4 3 2 11 1 0 0 
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TABLE 4.3 DISCRETE OPTIMAL DESIGNS TO ACHIEVE A SPECIFIED CONFIDENCE 
COEFFICIENT (1-a) AS A FUNCTION OF ajo- FOR ONE-SIDED 

COMPARISONS (THE UPPER ENTRY IN EACH CELL IS f0, 
AND THE LOWER ENTRY IS /-) 

/0 0 0* f1 1 2, 
p 

= 
3, k = 2, D0 

= 
\ },__).___ 

I 

ll. 2 3' 12 3 3> 

b = Vo + 3/i 

confidence 
coefficient 

(1-a) 0.2 0.4 

ajcr 

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

0.99 

241 

84 

61 

21 

27 

10 

16 

5 

10 

4 

0.95 

0.90 

0.80 

141 

56 

98 

44 

56 

32 

36 

14 

25 

11 

14 

8 

16 

6 

11 

5 

9 

4 

6 

3 

4 

2 

6 

2 

4 

2 

3 

1 

4 

2 

3 

1 

2 

1 

TABLE 4.4. DISCRETE OPTIMAL DESIGNS TO ACHIEVE A SPECIFIED 
CONFIDENCE COEFFICIENT (1-a) AS A FUNCTION OF a\v FOR ONE 

SIDED COMPARISONS (THE UPPER ENTRY IN EACH CELL IS /0, 

AND THE LOWER ENTRY IS /_) 

(0 0 0 0. rl 1 
p = ?,k=2,DQ = 

\ 
, D1=\ ll 2 3 4J 12 3 I) 

confidence 
coefficient 

(1-a) 0.2 0.4 

a/a 

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

0.99 

226 

73 

57 

18 

24 

9 

14 

5 

0.95 

136 

49 

33 

13 

16 

5 

0.90 

97 

39 

24 

10 

10 

5 

0.80 

56 

30 

15 

7 

2 

0 
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TABLE 4.5. DISCRETE OPTIMAL DESIGNS TO ACHIEVE A SPECIFIED 
CONFIDENCE COEFFICIENT (1-a) AS A FUNCTION OF aja FOR ONE 

SIDED COMPARISONS (THE UPPER ENTRY IN EACH CELL IS/0, 

AND THE LOWER ENTRY IS fx) 
,00000. fl 11122233 4? 

V1234 5? 12 34534545 5) 
p = 5, k 

2 3 4 5J ' 

6 = 5/0+10/1 

confidence 
coefficient 

d-a) 

a/cr 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

0.99 

0.95 

0.90 

0.80 

213 

65 

132 

44 

94 

36 

58 

27 

54 

16 

33 

11 

24 

9 

14 

7 

25 

7 

15 

5 

11 

4 

7 

3 

14 

4 

8 

3 

7 

2 

4 

2 

3 

1 

2 

1 

1 

1 

2 

0 

TABLE 4.6. DISCRETE OPTIMAL DESIGNS TO ACHIEVE A SPECIFIED 
CONFIDENCE COEFFICIENT (1-a) AS A FUNCTION OF a\v FOR ONE 

SIDED COMPARISONS (THE UPPER ENTRY IN EACH CELL IS/0, 

AND THE LOWER ENTRY IS %) 

f0 0000 0? rl 1111222233344 5^ 
,, D1== \ 2 345 6? 12 3456345645656 6J 

p = 6, k : 

confidence 
coemcient 

(1-a) 

0.99 

0.95 

0.90 

0.80 

0.2 

205 

57 

129 

39 

94 

32 

55 

26 

0.4 

52 

14 

32 

10 

24 

8 

15 

6 

M r1 L L 

?J 12 3 4 

S = 
6/0+15/; 

0.6 

24 

6 

13 

5 

12 

3 

6 

3 

0.8 

12 

4 

7 

3 

6 

2 

a?cr 

1.0 

9 

2 

1.2 

5 

2 

4 

1 

3 

1 

2 

1 

1.4 1.6 

3 

1 

2 

1 

1 

1 

3 

0 

1.8 

2 

1 

1 

1 

3 

0 

2 

0 

2.0 

2 

1 

3 

0 

3 

0 

2 

0 
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TABLE 4.7. DISCRETE OPTIMAL DESIGNS TO ACHIEVE A SPECIFIED 
CONFIDENCE COEFFICIENT (1-a) AS A FUNCTION OF a/o- FOR ONE 

SIDED COMPARISONS (THE UPPER ENTRY IN EACH CELL IS/?Y 

AND THE LOWER ENTRY IS /_) 

i> = 3,fc = 3,D0=- ll 1 
2], 

A? 
(21 

6 = 3/o +J_ 

confidence a\& 
coefficient ?-? 

(1-a) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 .1.8 2.0 

164 41 18 10 7 5 3 3 2 2 
0.99 0 0 1 10 0 2 0 1 0 

98 25 11 6 4 3 2 2 1 1 
0.95 2 0 0 10 0 10 1 0 

71 18 8 4 3 2 2 11 1 
0.90 1 0 0 2 0 0 0 10 0 

41 10 5 3 2 11 1 1 1 
0.80 8 3 0 0 0 10 0 0 0 

5. Continuous optimal designs 

5.1. Preliminaries. As in Section 3 we continue to deal with situations 

in which the minimal complete set consists of two generator designs D0 and 

Dx where D0 contains both the control and th? test treatments while Dx contains 

only the test treatments. In Section 4 we noted that, in general (but not 

always), the number of competing admissible designs increases with 6 for 

fixed (p, k). We have seen that for each (p, k) the optimal design depends on 

a/cr; also, the determination of the optimal design requires that the design 

maximizing g be found for each (p, k, 6) and a/or combination. This represents 
a formidable computing and tabulation task. The solutions for many of the 

useful combinations are given in Tables 4.2-4.7. 

In order to extend the results given in Section 4, and to do so in a compact 

form we introduce a method for finding an approximation to the discrete 

optimal designs. We shall refer to such designs as continuous optimal designs. 

The problem of obtaining the continuous optimal designs is analytically 
more tractable and computationally easier to solve. Moreover, since its 

solution does not depend individually on 6 and a/c but only on these quantities 

through ? 
= 

aVkbJcr, the number of solutions that must be tabulated is 

drastically reduced. In Section 5.7 we assess how closely the approximate 

discrete optimal designs (obtained from the continuous optimal designs) 

agree with the exact discrete optimal designs. 

B2-8 
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5.2. Definition of y. For given (p, k) and the associated minimal com 

plete set of generator designs {D0, DJ we define for an arbitrary BTIB design 
D =f0Do?fi?>v the quantity 

y~ b -foK+Ah 
' (5) 

which is the proportion of the total number of blocks allocated to D0. For 

large values of 6 we shall treat y e (0, 1] as a nonnegative continuous variable. 

Then regarding <r?2 and p of (2.6) and(2.4) (see also (A.8) and (A.9)), respectively, 
as continuous functions of y, we consider the integral (2.5) as a function of y 
for each (p, k, ?)-combination, and denote its value by g(y | D0, Dx; p, k;?) 

= 
g 

(say). Note that in Section 2.3 we regarded g as a discrete function of / 

(which for the special case of two generator designs can be regarded as a 

function only of f0 for fixed 6); here we regard g as a continuous function of y. 

Thus we are considering a continuous extension of the discrete function g. 

For convenience, we denote this continuous extension by the same symbol g. 

5.3. Optimization problem for continuous designs. Analogous to the 

optimization problem of obtaining discrete optimal designs stated in Section 

2.3, the problem of obtaining continuous optimal designs can be stated as 

follows : For given (p, k) and {D0, DJ, find the smallest ?, say f, and the 

associated optimal value of y, say y, to guarantee a specified confidence co 

efficient 1?a. Note that here the confidence coefficient 1?a is achieved 

exactly. The method of obtaining the approximate discrete optimal design 

/ 
== 

(/o>/i) fr?m the continuous optimal design (f, y) is explained in Section 5.6. 

As in the case of discrete optimal designs, it is helpful to conceptualize 

the optimal solution (y, f) for given (p, k), {D0, DJ, and specified 1?a as 

being obtained in two steps. However, in contrast to the discrete case, the 

solution in the continuous case is obtained in one step by solving a pair of 

simultaneous equations (5.8) and (5.9) given below. To this end we regard 

? as specified and fixed, and consider the maximization of g w.r.t. y alone. 

To maximize g w.r.t. y a study of the behavior of g as a function of y is required; 
this study is carried out in the following section. 

5.4. Maximization of g with respect to y : 

5.4.1. Derivative dg/dy. We seek to obtain the maximizing value y 
as the solution in y of the equation dg/dy 

= 0. In doing so we must be 

assured that a feasible solution in y exists, that it is unique, and that it is in 

fact associated with the maximum of g. Actually it turns out that either 
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a unique solution in y of dgjdy 
= 0 exists, lies in the interval (0, 1), and corres 

ponds to the maximizing value, or that the maximum value of g for y e [0, 1] 

occurs at the boundary y 
= 0 for ? sufficiently small or at the boundary 

y 
? 1 for \ sufficiently large; the solution y 

= 1 occurs only for Case 2 

(cf. Theorem 3.2). 

We show in Appendix 2 that 

where 

h(y\D0,Di;p,k;?) 

_ (g-lty* dp t g raft M? / T=^ | __P_ 1 

(l-p*)i/? ?y** L *, VT+fi\ p-*lfl V 
(l+p)(l+2p) I l+2/> J 

^ dy Ir? M+p| I+PJ 

In (5.3), <f>(-) denotes the standard normal p.d.f. and 4>r(x\p) denotes the c.d.f. 

at the equicoordinate point x of an r-variate equicorrelated standard normal 

distribution with common correlation coefficient p. The quantities <r?2, p, 

dpjdy and dtfjdy are given as functions of y by (A.1)-(A.4), respectively, in 

Appendix 1. Note that the sign of dgjdy depends only on the sign of 

h(y,\D0, D^p.kii). 
5.4.2. Study of g and its maximum. In this section we study the behavior 

of g as a function of y and ? for fixed (p, k) and {D0, Dx}. It is straightforward 

to check that in the limiting case y 
= 0we have (^2 

= oo, p 
= 

1) and hence 

(7 = 
1/2. For fixed y > 0, we note that as ? increases from 0 to oo, g increases 

from Op(0|p) to 1. 

All of our calculations and studies lead us to conclude that g regarded 

as a function of y attains a unique maximum at y, the value of which depends 

on ? and {D0, Dx}. For all ? (0 < \ < ?0 = ^(D^p, k)) where f0 is given 

by (5.6) below, we see that g is strictly decreasing in y, and hence y 
= 0 

maximizes g, the maximum being equal to 1/2. This result parallels the one 

obtained in Bechhofer (1969). 

To study the behavior of g as a function of y for ? > ?0, we note that 

for large ? the second term in (5.3) dominates and hence for large | we have 

sgn(dgjdy) 
= 

sgn(ft) 
= 

?sgn(?ty2/dy). In Appendix 1 we show that i/2 is a 

quasiconvex function of y for 0 < y ^ 1. We now obtain th,e following two 
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cases depending on whether ^2 achieves a minimum in the interior of [0, 1] 

(when ? > 0) or at the boundary y = 1 (when ? < 0) : 

Case 1 (? > 0) : In this case g has a unique maximum at y (0 < y < 1) 

for all ? > ?0; here y is the unique solution in y of the equation 

h(y\D0,Dx;p,k;l) 
= 0. ... (5.4) 

The maximizing solution y is a strictly increasing function of \ for ? > ?0. 
In the limit (? ?> oo) the maximizing solution approaches y* where y* is the 

largest limiting proportion of blocks that can be allocated to D0 in order 

that the design be 6-admissible. Thus 

/ 
= iim M. . 

&- 6 

This limiting value of y can also be found by minimizing the common variance 

of the a0??| (1 < i ̂ p), i.e., by solving the equation dr\2\dy 
= 0. 

Gase 2 (? ^ 0) : In this case there exists a positive constant 

Ii = Si(D09 Dx; p, k), (0 < f0 < |i < oo) such that for every ? e (?0, ?J, jr has 

a unique maximum at y < 1; here y is the unique solution in y to (5.4). The 

maximizing solution y is a strictly increasing function of ? for ? e (?0, ?J with 

y ?? 1 as ? 
? 

?x. For all ?> ?x the maximizing solution is also y = 1 

(which implies tio replications of DJ. As with Case 1, in the limit (? ?? oo), 

the maximizing solution is the value of y which minimizes the common vari 

ance of the ?0? ai (1 ̂  i ^ p). 

5.4.3. Definition of ?0. As the first step in finding a closed expression 

f o we 

see that 

for |0 we consider lim A(y|D0, D^p, k; %). From (A.3), (A.4) and (A.5) we 
y??o 

dp dw2 
lim ^ < 0 and lim ~ = ?oo < 0. 

7^0 oy y_>0 dy 

Therefore 

lim h(y\D0,Dx;p,k;l)\ 
= U ?=* H = K0 

I < J I < J 
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where ?0 
= 

ij0(Dx;p, k) is defined by 

?p (p-\)t d 
lim -7~ 

L 9 V 
l+p J * L ? V 

(l+/>)(l+2p) l+2p J ' 

We evaluate this limit in Appendix A2 and show it to be 

7 vx~rrnxT~"W i-r^y ? i 

i- */~E?U-l I 
<>? v 

i+p\l+P J J 
(5.5) 

fo = 
4^-1)^-2(011/3) V-^- 

- (5"6) 

Note that ?0 depends only on Dx but does not depend on D0. Since Dx is 

either a BIB or a RB design between the p test treatments, we can substitute 

A<x> = 
bxk(k-l)lp(p-l) in (5.6) to obtain 

?o=|l?^0|l/8)V-^=^- 
.- M * * 

(fe?1)77" 

Remark 5.1 : It is known (see, e.g., Gupta, 1963) that O0(0|l/3) 
= 1, 

Ox(0|l/3) = 1/2, O2(0|l/3) 
= l/4+(l/27r)arc sin (1/3), and O3(0| 1/3) = 1/8+ 

(3/47r)arc sin(l/3); Oi(011/3) has been computed to five decimal places for t 

= 
1(1)12 by Gupta (1963, Table II, p. 817). 

The values of f0 for p 
= 

2(1)6, k = 2 are 0-7979, 1-6926, 2-5214, 3-2894 

and 4-0073, respectively, while ?0 
= 1-4658 for p 

= 3, fc = 3. 

5.4.4. Definition of ?x. For Case 2, we define ?x as the smallest value 

of ? for which y equals unity; hence for ? ^ ?x we have y 
= 1. Thus ?x is 

the solution in ? of the equation 

h(y\D0,Dx;p,k]C)\y=x 
= 0. 

In general |x depends on both D0 and Dx. The value of ?x for p 
= 3, & = 3 

is 4-5081. 

5.4.5. Uniqueness of maximum of g as a function of y. As mentioned 

in Section 5.4.2, we have not yet proved analytically the existence of a unique 
maximum for g as a function of y when ?0 < ? < oo (nor was the corresponding 
result proved in Bechhofer (1969) or Bechhofer and Nocturne (1972)); however, 

all of our numerical calculations and certain analytical considerations point 
to this conclusion. 

We have computed g as a function of y for selected values of ??, and given 

the results in Tables 5.1 A and 5.IB to illustrate Cases 1 and 2, respectively. 
Table 5.1 A is for p 

= k = 2 (with generator designs [DQ, Dx} of (3.1)), and 
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Table 5.IB is for p 
= k = 3 (with generator designs {J90, Dx] of (3.5)); these 

computations give representative pictures of the behaviour of g as a function 

of y. The behavior of g in Table 5.1 A is analogous to that of g in Figure 1 

of Bechhofer (1969) in that g has a unique maximum at y < y* for ? > ?0. 

However, unlike the situation in Figure 1 where lim g == 
1/2? we now have 

lim g depending on ? and other parameters of the design. 
7-*l 

5.5. Solution to the problem of obtaining continuous optimal designs. 
We now describe the method of solution to the problem of obtaining conti 

nuous optimal designs. 

(a) If Case 1 holds or if Case 2 holds but % < \x (see comment below), 
then solve simultaneously the two equations 

h(y\D0,Dx;p,k;l) 
= 0 ... (5.8) 

jcfrf a^?1^1e?(g) 
= l^? ... (5.9) -oo L yl- p J 

for y and E, the solutions being y and |; here h, r?2 and yo are given by (5.3), 

(A.l) and (A.2), respectively. 

TABLE 5.1A. VALUES OF g AS FUNCTION OF y FOR SELECTED ? 
FOR p = A; = 2 (CASE 1 : ?0 

= 
0.7979) 

7 
? 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.5 .5000 .4794 .4680 .4569 .4451 .4321 .4174 .4004 .3802 .3558 .3251 

2.0 .5000 .5731 .5993 .6161 .6272 .6334 .6352 .6321 .6231 .6063 .5780 

TABLE 5.1B. VALUES OF g AS A FUNCTION OF y FOR SELECTED f 
for p 

= k = 3 (Case 2 : f0 
? 1.4658, ?- 

= 
4.5081) 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1.0 .5000 .4707 .4561 .4431 .4305 .4179 .4049 .3914 .3774 .3625 .3468 

3.0 .5000 .5879 .6196 .6407 .6556 .6661 .6730 .6769 .6779 .6762 .6716 

5.0 .5000 .6978 .7639 .8059 .8350 .8560 .8712 .8822 .8897 .8944 .8965 

(b) If Case 2 holds and \ ^ ?x, then solve only (5.9) for ? with y 
-? 

1, 

the solutions being y = 1, and |. 
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To see whether or not | < ?x 
= 4-5081 for p 

= k = 3 for any specified 

I?a, it is useful to note that g 
= 0-8561 for | 

= 
$x 

= 4-5081 which is cal 

culated by evaluating (2.5). Thus IS?i iff l~aS 0-8561. 

5.6. Use of tables of continuous optimal designs for p 
= 

2(1)6, k = 2 

and p 
= 

3, k = 3. For given (_p, k) and {D0, DJ, tables of continuous optimal 

designs can be computed using the method described in Section 5.5. This 

has been done for p 
= 

2(1)6, k = 2for {D0, DJ given by(3.1) and for p 
= k = 3 

for {DQ, Dx) given by (3.5). The results are summarized in Table 5.2 which 

for 1-a = 0-80, 0-90, 0-95, 0-99 gives y and f 

Table 5.2 is intended for large values of 6 (which occur when aja is small 

and/or 1?a is close to unity). The table is to be used as follows : (p, k), 

{D0, Dx] and a*2 are given and the experimenter specifies a and 1? a. Entering 

the table with (p, k, 1?a) the experimenter obtains y and the associated ?. 

Then 6 = 
int[(?<r/a)2/ft]. Finally, /0 is chosen so that 60/0/6 

~ y and b0fQ+bxfx 
is as close as possible ( ̂  )6. This process yields an approximately optimal 

discrete design with associated confidence coefficient of approximately 1?a. 

The approximations referred to in the paragraphs above arise because 

we use a discrete design which is as "as close as possible" to the optimal conti 

nuous design. These approximations become increasingly more accurate as 6 

increases. The goodness of the approximation is assessed in the next section. 

5.7. Comparison of exact and approximate optimal designs. To indicate 

the accuracy of the approximation provided by the continuous optimal designs 
we computed the exact discrete optimal design and the corresponding conti 

nuous optimal design for p = 2, k = 2, ajcr =0-2 and selected values of 6 

(and thus ?). The results are displayed in Table 5.3. We compared the 

approximate discrete optimal design obtained from the continuous optimal 

design (by the procedure described in the preceding paragraph) and found 

that it is the same as the corresponding exact discrete optimal design in every 
case listed in Table 5.3. We would expect that the continuous optimal 

designs will provide excellent approximations to the corresponding discrete 

optimal designs even for relatively small values of f (associated with low 

values of confidence coefficients). Our computations have shown that the 

(/-function is quite flat in the neighborhood of its maximum. As a reuslt, 

g for a discrete optimal design is only slightly smaller than d for the corres 

ponding continuous optimal design. 
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TABLE 5.2. CONTINUOUS OPTIMAL DESIGNS TO ACHIEVE A SPECIFIED 
CONFIDENCE COEFFICIENT (1-a) FOR ONE-SIDED COMPARISONS (THE 

UPPER ENTRY IN EACH CELL IS ?, AND THE LOWER ENTRY IS y.) 

,0 0 O. ,1 1 p-l\ 
p = 

2(1)6, ?; = 2 WITH J50 
= . >, A 

= 
I 

. 
\ 

ll 2 p) 12 3 pi 
,0 0 0. 

flj AND p = 3, k = 3 WITH D0 = I 1 1 2 V, JOj = i 2 
} 

confidence k = 2 & = 3 
coefficient - 

(1-a) jo = 2 p 
= 3 p 

= 4 p = 5 ^ 
= 6 ?> = 3 

7.0218 8.8362 10.3624 11.7052 12.9186 7.6870 
0.99 0.8373 0.7401 0.6729 0.6226 0.5831 1.0000 

5.2989 6.8621 8.1885 9.3623 10.4276 5.9551 
0.95 0.8188 0.7174 0.6491 0.5987 0.5595 1.0000 

4.3894 5.8265 7.0531 8.1429 9.1349 5.0482 
0.90 0.7968 0.6912 0.6220 0.5718 0.5331 1.0000 

3.2870 4.5741 5.6833 6.6750 7.5817 3.9613 
0.80 0.7440 0.6312 0.5616 0.5126 0.4756 0.9468 

TABLE 5.3. COMPARISON OF DISCRETE AND CONTINUOUS OPTIMAL DESIGNS 
FOR p 

= 
2, k = 2 AND ajcr 

= 0.2 

discrete optimal design continuous optimal design 
b I 

fa y g y ? 

10 0.8944 1 0.2000 0.5028 0.1001 0.5041 

15 1.0955 2 0.2667 0.5210 0.2567 0.5210 

20 1.2649 4 0.4000 0.5390 0.3528 0.5393 

25 1.4142 5 0.4000 0.5572 0.4195 0.5572 

50 2.0000 15 0.6000 0.6352 0.5881 0.6352 

75 2.4495 25 0.6667 0.6965 0.6627 0.6965 

100 2.8284 35 0.7000 0.7457 0.7062 0.7457 

5.8. Asymptotically optimal allocation on the control treatment. For a 

completely randomized design, Dunnett (1955, 1106-1107) recommended 

for 1?a > 0-95 (approximately) that for every observation made on each 

one of the test treatments, ^/p observations should be made on the control 

treatment, i.e., the proportion of the total observations N that should be 

allocated to the control treatment is (1 + Vp)"1- Bechhofer (1969) showed 

that this allocation is asymptotically (N ?> oo) optimal (i.e., maximizes the 

confidence coefficient for given N and specified a) for one-sided comparisons; 
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Bechhofer and Nocturne (1972) extended this result to two-sided comparisons. 
It is of some interest to find an analog of this result for BTIB designs. We 

do this in the present section by employing the continuous approximation. 

Let 6 denote the proportion of observations allocated to the control 

treatment in a BTIB design; note that d = 
y/2 for p > 2, k = 2 and 6 = 

y/3 
for p = 3, k = 3. From Section 5.4.2 we know that for Case 1 (which holds 

when p > 2, k = 
2), the optimal limiting value of y, namely y*, is obtained 

by solving dr?2jdy 
= 0 where dr?2jdy is given by (A.4); for Case 2 (which holds 

when p 
= 3, k = 

3), y* 
= 1. The solution y* was given in (3.11) for p > 2, 

k = 2. If 6* denotes the asymptotically optimal proportion of observations 

allocated to the control treatment then we have d* = 
y*/2 for p > 2, k = 2 

and 0* =y*/3 =1/3 for jp 
= 3, & == 3. The values of 0* are given in 

Table 5.4. 

TABLE 5.4. ASYMPTOTICALLY OPTIMAL PROPORTION 
OF OBSERVATIONS (6*) ON THE CONTROL 

TREATMENT USING A BTIB DESIGN 

p k 6* (1+V^)"1 

2 2 0.4227 0.4142 

3 2 0.3750 0.3660 

4 2 0.3417 0.3333 

5 2 0.3165 0.3090 

6 2 0.2966 0.2899 

3 3 0.3333 0.3660 

This table shows that although the asymptotically optimal proportion 0* for 

BTIB designs is different from (1 + Vp)'1 which holds for a completely 
randomized design, the 6*-values are quite close to (I + Vp)'1- Of course, 

this statement applies only to the (p, ̂ -combinations studied here all of which 

involve two generator designs in the minimal complete set. 

6. Comparison of an optimal btib design with a bib 

design between all treatments 

In the preceding sections we have considered the problem of choosing an 

optimal design from the class of BTIB designs. A BIB design between all 

p+l treatments (including the control treatment) is also a member of this 

class. It is of some interest to ascertain the potential gains achievable in 

terms of the decreased total size of the experiment if an optimal BTIB design 

B2-9 
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is used instead of the corresponding BIB design; it is assumed here that 

(p, k), {D0, DJ are given and aja and 1?a are specified. In this section we 

make such a comparison for large 6; thus continuous approximations can be 

used, and the problem of existence of designs for a given 6 can be ignored. 

We first note that in the case of BIB designs, (2.2), (2.4), and (2.7) 

simplify to 

varfo-?*} 
= 

5^T 
(1< i < p) ... (6.1) 

p = 
corr{a0-?,v ?0-?i2} 

= 
1/2, (tx =? ?2; 1 <?x, i% < p) ... (6.2) 

and 

J^p[x+?J~^]d4>(x), 
... (6.3) 

respectively. Denote by Obib the minimum number of blocks required, to 

guarantee a specified confidence coefficient 1?a using a BIB design. Then 

obib is given by solving the equation 

Wik-l)pk =(a^/kbJcrW(k-l)lpk =c, 

2 pc2<r2 
i.e., bBiB = 

(?ZT)di-> 
- (6-4) 

where c = 
Cp.i-j, is the solution of the equation 

J *2>(*+c)d*(a:) 
= 1-a. ... (6.5) ? OD 

The values of c have been tabulated by Bechhofer (1954), Gupta (1963) and 

Milton (1963) for selected values of p and 1?a; Bechhofer's ? equals c while 

Gupta's and Milton's H equals c\<\/2. 

Denote the corresponding minimum number of blocks required, using the 

optimal BTIB design by $btib- Note that b?TTB is given by 

Sbt/r = 
02 

... (6.6) 

A. 
where ? is given in Table 5.2. 

For given (p, k), {D0, Dx}, a2 and specified a and 1?a we define the 

efficiency of a BIB design relative to that of an optimal BTIB design by 

ReJ? =(i)2^ 
... (6.7) 
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Since a BIB design is a special case of BTIB designs we see that the relative 

efficiency (RE) is <; 1. The values of RE for selected (p, k) and 1?a are 

listed in Table 6.1. 

TABLE 6.1. EFFICIENCY OF A BIB DESIGN RELATIVE TO AN 
OPTIMAL BTIB DESIGN 

confidence coefficient (1-a) 

0.80 0.90 0.95 0.99 

2 2 0.9892 0.9684 0.9557 0.9420 

3 2 0.9729 0.9414 0.9228 0.9027 

4 2 0.9581 0.9201 0.8979 0.8737 

5 2 0.9454 0.9029 0.8783 0.8512 

6 2 0.9346 0.8887 0.8623 0.8330 

3 3 0.9729 0.9423 0.9267 0.9109 

From Table 6.1 we note that for fixed k and 1?a, RE decreases as p 

increases; also for fixed p and k, RE decreases as 1?a increases. Thus it is 

seen that substantial improvements in efficiency (i.e., savings in the total 

number of blocks) can be achieved by using an optimal BTIB design instead 

of the corresponding BIB design. 
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Appendix 1 

Proof of Theorem 3.1 : For mathematical convenience and without loss 

of generality we shall regard y =/060/6 as a continuous variable taking values 

in the interval (0, 1]. (We use the same continuous approximation in Section 

5.) For p 
= 2, k = 2 and p = 3, k = 3 we substitute A0 =/0A[)0), 

Aj =/0A(l0)+/iA(11), 6 -/0&0+/A and/0 =6y0/6 in (2.6) and (2.4) to obtain 

_ F60{y(61A<1o)-60^)+61A<0o))+60A^} 
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and 

respectively. It follows that 

dp -bAWW_ 0 fA 3) 

for bx, A^> > 0, and therefore p is strictly decreasing in y (and hence in /0). 
Next we have 

___!__k\jr(y)_ 
5r A<V{r_p(Mi0)-Mi1))+6iAg))]+i)Mi1)}2 

" ' { ' 

where 

#7) - 
r2(Mi1)-Mi0)~6iA^)[p(61Af~60A^))+^ 

-2y60A</>[MM_0)-M_^ 
... (A.5) 

Since lim rf 
= oo, it follows that rf must be decreasing, at least in a small 

y ?*o 

neighborhood of y 
= 0+; thus it suffices to show that rf has at most one 

stationary point in (0, 1], i.e., that the equation r?r(y) 
= 0 has at most one 

root in (0, 1]. 

Since the constant term ? 
_?(60A (1))2 in (A.5) is negative, a necessary (but 

clearly not sufficient) condition for both roots of ijr(y) to be real, positive and 

distinct is that the coefficients of y2 and y in t}r(y) be negative and positive, 

respectively, i.e., we require that 

p(bxW-b0A[?)+bxW < 0. 

Therefore, 

djrjy) 
dy 

y=l 

The latter inequality shows that \?r(y) is increasing at y 
= 1. This together 

with the fact that x?r(y) ?> ? oo as y ?> ?00 implies that at most one root of 

i?r(y) must be in (0, 1]. 

The proof of the theorem now follows easily since Case 1 or Case 2 holds 

depending on whether or not 

sgn { ̂ ; } 
= sgn{^(y) |,_-} = sgnfo/?} 

ly=l 

is > 0 or < 0, respectively, where ? is given by (3.9). If Case 1 holds then 

rf first decreases and then increases with /0 (i.e., y) while p always decreases 
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with /0. Hence there exists a critical number /J which is the smallest value 

of/0 at which r?2 starts increasing (for fixed 6). Thus/J is the smallest value 

of/0 satisfying r/2(f0) > V2(fo~d) where d is the smallest positive integer such 

that d60/61 is a positive integer. If/* ^/^, then clearly designs with /0 > /* 
are inadmissible. If Case 2 holds then since both r?2 and p are strictly decreas 

ing in f0 (i.e., y), all designs D =/o#o U/i^i ^^ /o > 0 are admissible. 

Proof of Theorem 3.2 : We can express r2 of (2.3) and p of (2.4) as 

?o Wo(Mr+p[Mr-Mn)+?>} 
(A.6) 

? ._ /?(Mf-M^+M?) . A P 
~/o(Mf+Mi?>-W)+K1)' 

'" { ' 

r'2 and p' have analogous expressions with /0 replaced by f'0 and 6 replaced 

by 6'. 

We shall show that 6 < b' and ?>>/>' implies that r2 > r'2. From 

p > />' and (A.7) we get that /06-/06' > 0, i.e.,/0//0 < 6/6' < 1. Therefore 

we have 

fo-fo>0- - (A.8) 

Now using (A.7) and (A.8) we shall show that r2 > r'2, i.e., we shall show 

that 

ifo-MfJoM+WpX??) > A^fJ0(b-bf)pAM?bf~f0%)B] ... (A.9) 

where A = 
bxA^+bx?^~b0?^ and B = 

61A^)+i>(61A(?)-60A(1)). We consider 

the cases p > 2, & = 2 and ^> 
= 3, k = 3 separately. 

(7a5e 1 (# > 2, fc =2) : Using (3.2) and (3.3) we obtain 4 = 2>(i>?3)/2, 
5 = 

-^-(-i)^. Substituting in (A.9) for A, B and for 6, 6' from (3.4) we 

find after a lengthy algebraic manipulation that (A.9) will follow if we show 

that 

(/?-/o)(/o/o+?'/i/?+/o/i+/o/?)+(?'-l)/o/o(/i-/i)>0. ... (A.lu) 

Now note that 6'?6 > 0 yields 

Ji~fi > 
~~ 

(v__i) \Jo~fo)> 

and since from (A.8) we have/??f0 > 0, (A.10) will follow if we show that 

PfJi+fofi+fofi-fofo>0. .- (A.11) 
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We use the bounds /0 < 6y*/60,/0 < b'y*jb where y* is given by (3.11) to 

obtain the following bound on fx (and an analogous bound on f[) : 

{ 
Vp+i 

p 
- 

) / 

A> < 

/o 

p> 2,p^3, k =2 

p 
= 3, k = 2. 

(A.12) 

Thus a lower bound on the Lh.s. of (A. 11) will be obtained by substituting 

in it (A.12) (and an analogous bound on f[). It is easy to verify that this 

substitution yields a lower bound on the lii.s. of (A.12) of exactly zero which 

completes the proof of this case. 

Gase 2 (p 
= 3, k = 

3) : Using (3.6) and (3.7) we obtain A = 0, B = ? 4. 

Substituting these in (A.9) we find that (A.9) will follow if we show that 

Mffi-m 
<&'. (A.13) 

36(/o-/o) 

But the l.h.s. of (A.13) is less than 

4(/o26-/o2&)/3&(/o-/o) < 4(/o+/o)/3 < 8/0/8 < 3/; < V 

which completes the proof of this case and the theorem. In the preceding 

line of the proof we have used the inequalities /0 </o and 6 < 6'. 

Appendix 2 

Derivation of Results in Section 5 

Evaluation and simplification of dgjdy. From (2.7) and the definition of g 

given in Section 5.2 we obtain by direct calculation 

f vVl 

x ,vi_,pvm. ge.)-(? 
v?+t 

){ivi-P__%_) -j 
iv-p) 

dx. 

{AM) 
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In (A.14), $( ) denotes the standard normal p.d.f., <D(-) denotes the standard 

normal c.d.f., rf =dr?jdy = (\j2y?)drfjdy where drfjdy is given by (A.4), and 

p' =dpjdy is given by (A.3). After some simplification (A.14) can be written 

as 

Hi - ^JL_ [ ?V f*-if_^t?l? f ̂ Vp+i I 6(r)dx 
dy 

- 
2^(i~p2T372? Vplxq>p [ yV?^r l-f7T=p"J 

^{l)dx 

-mv-P)-vpy*^ m**) 
. 

... (A.1?) 

Making the change of variables 

(A. 15) can be expressed as 

dg _ p i vy _ 
r svy . f 

... (A.16) 

where 

(A.17) 

_j1= J y*v-\yWymy)?y, ... (A.18) ? oc 

_78= f *v-HyWy)f{y)<ly, ... (A.19) ? oc 

and 0*(?/) denotes <?>((y?S)?R). We now evaluate J^ and _52. Integrating 

by parts in Ex with ?7 = *-9"%)^*(j/) and dF =y<f>(y)dy we obtain 

,1=JF*1+T,|+(P"1? 
'" (A,20) 

where 

B? = J *M</)0WW?/. - (A.21) 
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From (A.20) we have 

s (P-D& ?l~ W+??*+ B*+l E* 

Substituting (A. 22) in (A. 16) we obtain 

dg _ p ff Sifp' 

.. (A.22) 

4^-mi^-{-[^^+imi-p)-1^]Bt 

vY(p-i) 
E. 

) 

By developments similar to those in Bechhofer (1969) we can write 

(A.23) 

E* 
B 

T*( 
S 

Vb?+? rWB*+i 
*p-i 

V(2B*+l)(3B*+l) 

B* 
B*+ t) 

.. (A.24) 

8 
V{2&+l)2n \ V2?2+l/ 

v 2L V(2B*+1){ 

Bz 
ZB2+ ?] -1X3^+1)1 

... (A.25) 

Substituting E2 and Ez from (A.24) and (A.25) in (A.23), and replacing B and 
8 by their definitions in (A. 17) we obtain 

1+pl 

"*" 
V?nf?+d M * > 

i+p/ *-*l 7 * 
(1+pvT+M I i+2/> J ? T(l+P) 1+P 

2 MyiDo.D^p^ii) 

where A(y | Z>0, Z^; #, ?fc; ?) is given by (5.3). 

Evaluation, of the limit in expression (5.5) for ?0 : We note from (A.1) and 

(A.2) that lim n2 =oo and Urn p = 1. Since Op-^O 11/2) = 1/p we have 
t?>o y??o 

from (5.5) that 

* 
_j>(y-l)^-2(0|l/3)lim 1 

' 
dy 

?3^ 1 
w2 " 

L^irj 
I. ... (A.26) 
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Using (A.3) and (A.4) we write 

?- = --_ Jlw {r(MT-MT+M(S')+MT}3/ii ,A 27v 
df f{y) v A<?> {yMb^-b^+b^+pb^}- 

- ^ '' 

dy 

where ^r(y) is given by (A.5). Using (A.2) and (A.3) we write 

jp_ _ 
__ _?_ __ _ft Ad, ?/*-__? M2(M'?>-M<i>)+Mt?a+2M<i>}-i/*. 
Vl~2 ?<AiN-y r(M(o)_6oA(,)+M(o,)+6oAa, 

... (A.28) 

Combining (A.27) and (A.28) we obtain 

V 

{y(M(?)-M(i)+&iA(g))+M(I;}{y_p(??iA(^-M(l))+ftiA(g)]+j>M(i>} 11/2 

7[2(M<?>-&0?<?>)+M<o>]+2M<j> J 

... (A.29) 

Since lim \[r(y) 
= ? 

jo^A*^)2 we have 
?-40 

X 

9' 
dp 

lim 
-^3-?- =*V-????T-- 

- (A-30) 

Substituting (A.30) in (A.26) we obtain the desired result (5.6). 
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